Saturable absorption is a property of materials where the absorption of light decreases with increasing light intensity. Most materials show some saturable absorption, but often only at very high optical intensities (close to the optical damage).
At sufficiently high incident light intensity, atoms in the ground state of a saturable absorber material become excited into an upper energy state at such a rate that there is insufficient time for them to decay back to the ground state before the ground state becomes depleted, and the absorption subsequently saturates.
Saturable absorbers are useful in laser cavities. The key parameters for a saturable absorber are its wavelength range (where it absorbs), its dynamic response (how fast it recovers), and its saturation intensity and fluence (at what intensity or pulse energy it saturates). They are commonly used for passive Q-switching.
Contents |
Within the simple model of saturated absorption, the relaxation rate of excitations does not depend on the intensity Then, for the continuous-wave operation, the absorption rate (or simply absorption) is determined by intensity :
where is linear absorption, and is saturation intensity. These parameters are related with the concentration of the active centers in the medium, the effective cross-sections and the lifetime of the excitations.[1]
In the simplest geometry, when the rays of the absorbing light are parallel, the intensity can be described with the Bouguer law,
where is coordinate in the direction of propagation. Substitution of (1) into (2) gives the equation
With the dimensionless variables , , equation (3) can be rewritten as
The solution can be expressed in terms of the Wright Omega function :
The solution can be expressed also through the related Lambert W function. Let . Then
With new independent variable , Equation (6) leads to the equation
The formal solution can be written
where is constant, but the equation may correspond to the non-physical value of intensity (intensity zero) or to the unusual branch of the Lambert W function.
For pulsed operation, in the limiting case of short pulses, absorption can be expressed through the fluence
where time should be small compared to the relaxation time of the medium; it is assumed that the intensity is zero at . Then, the saturable absorption can be written as follows:
where saturation fluence is constant.
In the intermediate case (neither cw, nor short pulse operation), the rate equations for excitation and relaxation in the optical medium must be considered together.
Saturation fluence is one of the factors that determine threshold in the gain media and limits the storage of energy in a pulsed disk laser.[2]
Absorption saturation, which results in decreased absorption at high incident light intensity, competes with other mechanisms (for example, increase in temperature, formation of color centers, etc.), which result in increased absorption.[3][4] In particular, saturable absorption is only one of several mechanisms that produce self-pulsation in lasers, especially in semiconductor lasers.[5]
One atom thick layer of carbon, graphene, can be seen with the naked eye because it absorbs approximately 2.3% of white light, which is π times fine-structure constant.[6] The saturable absorption response of graphene is wavelength independent from UV to IR, mid-IR and even to THz frequencies.[7]
Saturable absorption has been demonstrated for X-rays. In one study, a thin 50 nanometres (2.0×10−6 in) foil of aluminium was irradiated with soft X-ray laser radiation (wavelength 13.5 nanometres (5.3×10−7 in)). The short laser pulse knocked out core L-shell electrons without breaking the crystalline structure of the metal, making it transparent to soft X-rays of the same wavelength for about 40 femtoseconds.[8][9]